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Introduction 
The determination of mechanical 
properties for small volumes of 
material is becoming increasingly 
important for many facets of science 
and technology, both industrial 
and academic. Nanoindentation 
equipment from Agilent Technologies 
has been used in a variety of ways 
to study the mechanical behavior 
of materials. Fracture toughness 
is an important property that 
can be evaluated with an Agilent 
nanoindenter. Fracture toughness, 
represented by the symbol KIC, is the 
critical value of the stress-intensity 
factor at a crack tip necessary to 
produce catastrophic failure under 
plane-strain conditions. Lower 
values of KIC indicate a greater 
tendency toward catastrophic 
failure due to a pre-existing fl aw [1]. 
With the newly released Stiffness 
Mapping method from Agilent 
Technologies, evaluating fracture 
toughness by nanoindentation has 
never been easier. 

Experimental Procedure 
The purpose of the testing was to 
determine the fracture toughness 
of fused silica. The fi rst step in 
evaluating fracture toughness is to 
indent the material in such a manner 
as to induce cracking at the surface. 

The cube corner was chosen for this 
purpose due to the high stress it 
imposes in the vicinity 
of contact.  

Three peak loads were used for this 
application note 100mN, 125mN 
and 150mN. Ten indentations were 
performed at each load. The residual 
impressions were then imaged by 
Agilent’s new stiffness mapping 
method. Each indent featured 
cracking at each of the three corners 
and these crack lengths were 
measured. Each crack length was 
used as an input into the fracture 
toughness equation.

Once the crack lengths were 
determined, elastic modulus and 
hardness of the fused silica were 
measured with a Berkovich tip. Once 
the mechanical properties were 
calculated the fracture toughness 
was determined according to the 
following equation [2]:

   Eq.1
  

Where � is a geometric constant 
whose value is 0.032 for a cube 
corner indenter [3], E is Young’s 
modulus, H is hardness, Pmax is peak 
load and c is crack length. 
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only the length of the primary crack 
emanating from the corner of the 
residual impression was measured. 

After the inputs to Eq. 1 were 
determined the fracture toughness 
of fused silica was calculated and 
the tabulated results are shown in 
Table 1. A graphical representation is 
provided in Figure 2.  

The experimental fracture toughness 
values from Table 1 agree well 
with a reported value range of 
0.73MPa√m – 0.80MPa√m for bulk 
fused silica [3]. The calculated results 

Results 
An image representative of the 
scanned indents is shown in Figure 1. 
Pythagoreans Theorem was used to 
determine the crack lengths. Some 
of the indentations produced split 
cracks which can be seen in Figure 1. 
When the cracks fi rst begin to 
propagate, primary cracking, they 
emanate from the three corners of 
the pyramidal indenter where stress 
is highly concentrated. Secondary 
cracking which produces split cracks 
may be seen emanating from the 
corner of the residual impression or 
from a primary crack. When secondary 
cracks propagate from the corners it 
can be diffi cult to decide which is the 
primary and which is the secondary 
crack. In this case it is best to 
calculate an average length for the 
primary and secondary cracks at the 
corner of interest. When secondary 
cracks propagate from a primary crack 
they are offset by some angle. Here Table 1.  Fracture Toughness Results  

  KIC 100mN KIC 125mN KIC 150mN

  MPa m0.5 MPa m0.5 MPa m0.5

 Average KIC 0.660 0.689 0.703

 Standard Deviation 0.104 0.147 0.135
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were easily acquired using Agilent’s 
Stiffness Mapping method. Stiffness 
mapping utilizes the Continuous 
Stiffness Measurement (CSM) 
technique to measure stiffness 
as a function of position. As the 
indenter tip scans the surface of a 
bulk material the stiffness remains 
constant. As the tip moves into a 
crack the contact area of the tip 
increases resulting in a large increase 
in stiffness relative to that of the 
material’s surface. This allows for 
clearly visible cracks in the stiffness 
mapping image. 

Figure 1.  Comparison of (a) topography and (b) stiffness maps.

(a) (b)
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Fracture toughness may also be 
calculated using a topological map. 
However, the cracks are not as visible 
because the change in topography 
between surface and crack is not 
large. The difference in crack visibility 
between topography and stiffness 
is illustrated in Figure 1. Because 
the relative change in stiffness is 
greater than the relative change in 
topography, stiffness mapping is the 
preferred technique when evaluating 
fracture toughness of materials.

Figure 2.  KIC as a function of peak load.

Conclusion
Topological or stiffness maps may be 
used to calculate fracture toughness. 
However, stiffness mapping is the 
preferred technique due to the clarity 
of cracks in the resultant image. 
The crack lengths can be measured 
using Pythagoreans Theorem. Once 
the crack lengths and mechanical 
properties have been determined Eq. 1 
may be used to calculate the fracture 
toughness. The experimental fracture 
toughness values shown in Table 1 
agree well with a reported value range 
of 0.73MPa√m – 0.80MPa√m for 
bulk fused silica [3].
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